skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sultana, Camille M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background: Glyoxal has been implicated as a significant contributor to the formation of secondary organic aerosols, which play a key role in our ability to estimate the impact of aerosols on climate. Elevated concentrations of glyoxal over remote ocean waters suggests that there is an additional source, distinct from urban and forest environments, which has yet to be identified. Herein, we demonstrate that the ocean can serve as an appreciable source of glyoxal in the atmosphere due to microbiological activity. Methods and Results: Based on mass spectrometric analyses of nascent sea spray aerosols and the sea surface microlayer (SSML) of naturally occurring algal blooms, we provide evidence that during the algae death phase phospholipids become enriched in the SSML and undergo autoxidation thereby generating glyoxal as a degradation product. Conclusions: We propose that the death phase of an algal bloom could serve as an important and currently missing source of glyoxal in the atmosphere. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. null (Ed.)
  3. Heterogeneous ice nucleation in the atmosphere regulates cloud properties, such as phase (ice versus liquid) and lifetime. Aerosol particles of marine origin are relevant ice nucleating particle sources when marine aerosol layers are lifted over mountainous terrain and in higher latitude ocean boundary layers, distant from terrestrial aerosol sources. Among many particle compositions associated with ice nucleation by sea spray aerosols are highly saturated fatty acids. Previous studies have not demonstrated their ability to freeze dilute water droplets. This study investigates ice nucleation by monolayers at the surface of supercooled droplets and as crystalline particles at temperatures exceeding the threshold for homogeneous freezing. Results show the poor efficiency of long chain fatty acid (C16, C18) monolayers in templating freezing of pure water droplets and seawater subphase to temperatures of at least −30 °C, consistent with theory. This contrasts with freezing of fatty alcohols (C22 used here) at nearly 20 °C warmer. Evaporation of μL-sized droplets to promote structural compression of a C19 acid monolayer did not favor warmer ice formation of drops. Heterogeneous ice nucleation occurred for nL-sized droplets condensed on 5 to 100 μm crystalline particles of fatty acid (C12 to C20) at a range of temperatures below −28 °C. These experiments suggest that fatty acids nucleate ice at warmer than −36 °C only when the crystalline phase is present. Rough estimates of ice active site densities are consistent with those of marine aerosols, but require knowledge of the proportion of surface area comprised of fatty acids for application. 
    more » « less
  4. Abstract Oceans are, generally, relatively weak sources of ice nucleating particles (INPs). Thus, dust transported from terrestrial regions can dominate atmospheric INP concentrations even in remote marine regions. Studies of ocean‐emitted INPs have focused upon sea spray aerosols containing biogenic species. Even though large concentrations of dust are transported over marine regions, resuspended dust has never been explicitly considered as another possible source of ocean‐emitted INPs. Current models assume that deposited dust is not re‐emitted from surface waters. Our laboratory studies of aerosol particles produced from coastal seawater and synthetic seawater doped with dust show that dust can indeed be ejected from water during bubble bursting. INP concentration measurements show these ejected dust particles retain ice nucleating activity. Doping synthetic seawater to simulate a strong dust deposition event produced INPs active at temperatures colder than −13°C and INP concentrations 1 to 2 orders of magnitude greater than either lab sea spray or marine boundary layer measurements. The relevance of these laboratory findings is highlighted by single‐particle composition measurements along the Californian coast where at least 9% of dust particles were mixed with sea salt. Additionally, global modeling studies show that resuspension of dust from the ocean could exert the most impact over the Southern Ocean, where ocean‐emitted INPs are thought to dominate atmospheric INP populations. More work characterizing the factors governing the resuspension of dust particles is required to understand the potential impact upon clouds. 
    more » « less